Linear and Quadratic Knapsack Optimization Problems

Montaz Ali

School of Computer Science and Applied Mathematics University of the Witwatersrand, Johannesburg, South Africa

January 10, 2018

Montaz Ali School of Computer Science and Linear and Quadratic Knapsack Optimization

Figure: The knapsack problem

$$\max \qquad \sum_{\substack{1=1 \\ i=1}}^{n} v_i x_i \qquad (1)$$

subject to
$$\sum_{\substack{i=1 \\ i=1}}^{n} w_i x_i \le W, x_i \in \{0, 1\} \qquad (2)$$
$$\max_i w_i \le W < \sum_{\substack{i=1 \\ i=1}}^{n} w_i$$

Choice of items to make where there are no items that depend on one another.

() Sort items non-increasingly, according to v_i/w_i , i.e.

$$\frac{v_1}{w_1} \geq \frac{v_1}{w_1} \geq \cdots \frac{v_n}{w_n}$$

Fill items into the knapsack in the order 1, 2, · · · , n until no items can be added.

• Consider all possible sets of up to at most k items

$$\mathcal{F} = \{F \subset \{1, 2, \cdots, n\} : |F| \le k, w(F) \le W\}$$

2 For all $F \in \mathcal{F}$

- Pack F to the knapsack
- Greedily fill the remaining capacity
- End
- Return the most valuable set

$$\max \qquad \sum_{j=1}^{n} c_{j} x_{j}$$
(3)
subject to
$$\sum_{j=1}^{n} a_{ij} x_{j} \le b_{i} \ i \in \{1, 2, \cdots, m\}, x_{j} \in \{0, 1\}$$
(4)

Choice of projects to make where there are no projects that depend on one another.

$$\begin{cases} \max_{x} \quad \sum_{j=1}^{n} c_{j} x_{j} + \sum_{k=1}^{n-1} \sum_{j=k+1}^{n} d_{kj} x_{k} x_{j}, \quad c_{j} = d_{jj} \\ s.t. \quad \sum_{j=1}^{n} a_{ij} x_{j} \le b_{i}, i = 1, \cdots, m, \\ x \in \{0, 1\}^{n}, \end{cases}$$

Choice of items to make where there are the relations between pair of items.

$$\begin{cases} \max_{x} \sum_{i=1}^{n} \sum_{j=1}^{n} p_{ij} x_{i} x_{j}, \quad d_{ij} = p_{ij} + p_{ji} \\ s.t. \sum_{j=1}^{n} w_{j} x_{j} \leq W, i = 1, \cdots, m, \\ x \in \{0, 1\}^{n}, \qquad \max_{j} w_{j} \leq W < \sum_{j=1}^{n} w_{j} \end{cases}$$

Choice of items to make where there are the relations between pair of items.